# Nature engineered for tomorrow





Hemplizit® – The biobased filler for rubber compounds

# **Hemplizit®**



## Get to know Hemplizit®:

A biobased functional filler made from industrial hemp shives, designed for use in rubber formulations. Substitution potential for up to 50% of carbon black or silica - depending on the polymer matrix.

## **Hemplizit® Product Lines**



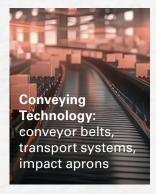
#### High PerformanceE:

Built for applications that require consistent excellence

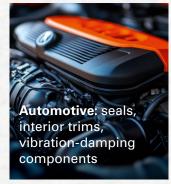
10-50 µm

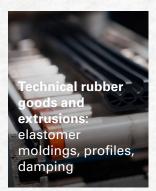


#### Standard PerformancE:


All-rounder with reliable performance across a wide range of applications

50-80 µm


### **Chemical structure and function**


- Hemicellulose actively interacts with crosslinking agents and provides additional reactive sites for chemical crosslinking in the vulcanisation process
- Tellulose acts as a reinforcing fibre structure that increases the mechanical stability of the compound
- Hydroxyl (-OH) and carboxyl (-COOH) groups enable hydrogen bonding and chemical reactivity, improve compatibility with rubber matrices through silanization or covalent bonding, and thereby enhance dispersion, adhesion, and performance in polymer compounds.

# **Applications**









... and many more applications in rubber

# **Technical properties**



#### **Lower density**

0.98 g/cm³ vs. 1.8 g/cm³ for carbon black – enabling significant weight savings



Ensures uniform distribution in compounds, ideal for rubber formulations



# Mechanically active

Helps enhance tensile strength and elasticity across various elastomer types



# Thermally stable, UV-resistant, non hygroscopic

Ideal for outdoor use and long-term performance

| Property               | Carbon Black | Silica | Hemplizit® HPE 50 | Hemplizit® HPE 30 | Evaluation                                |
|------------------------|--------------|--------|-------------------|-------------------|-------------------------------------------|
| Shore A                | +            | +      | +                 | ++                | Equivalent to better                      |
| Tensile Strength       | ++           | +      | +                 | ++                | Stable                                    |
| Elongation at<br>Break | +            | +      | +                 | ++                | Optimized                                 |
| Processing             | -            | +      | ++                | ++                | Very good<br>dispersibility               |
| SBR                    | ++           | -      | ++                | ++                | Improved abrasion performance             |
| NR                     | +            | ++     | +                 | +                 | Optimized                                 |
| EPDM                   | +            | -      | ++                | ++                | Better extrusion behaviour                |
| NBR                    | ++           | -      | ++                | ++                | Stable                                    |
| LCA                    | -            | -      | ++                | ++                | Significantly better (plant-based origin) |

# **Long-Term and Processing Properties**

#### Stability over time

No embrittlement or chemical degradation – even during extended storage



#### High compatibility

Compatible with common additives, process oils, and plasticizers



#### Thermal resistance

Temperature-stable up to 220 °C, depending on matrix and formulation



#### **Processing advantage**

No silanization required – direct integration into existing compounds



# Good to know...



## Why Hemplizit® matters now

- , Increasing demand for more sustainable solutions in the industry
- Drive to reduce overall carbon footprint
- Need to replace fossil-based, energy-intensive, and environmentally critical raw materials
- New economic incentives for low-carbon alternatives
- Regional raw material
- Fills the gap for circularity



### Hemp as a renewable resource

- Fast-growing, requires minimal water and pesticides
- , Binds CO<sub>2</sub> during growth
- Naturally purifies soil by absorbing and binding pollutants
- Supports regeneration of contaminated land



# Hemplizit® at a glance – compared to conventional fillers

#### **Fossil Free**

100% natural material based on industrial hemp

#### CO<sub>2</sub>-reducing

Absorbs more CO<sub>2</sub> in growth than emitted during processing (Life Cycle Assessment available)

#### **Biodegradable**

Environmentally friendly in disposal and abrasion – no microplasics, no persistent residue

#### Published by:

Biesterfeld SE Ferdiandstrasse 41 20095 Hamburg Germany www.biesterfeld.com

#### Contact:

Franziska Tödter Product Manager Rubber and Sustainability Specialist Phone: +49 40 32008295 f.toedter@biesterfeld.com

#### Disclaimer:

Our advice, information or recommendations regarding application shall be provided to the best of our knowledge. As the actual application is beyond our scope of influence, and as the circumstances of such application are not completely foreseeable, written and verbal indications, suggestions etc. can only be provided on a non-binding basis.